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Abstract  

Identifying and assessing Parkinson's disease in its early stages is critical to effectively monitoring the 

disease's progression. Methodologies based on machine learning enhanced speech analysis are gaining 

popularity as the potential of this field is revealed. Acoustic features, in particular, are used in a variety of 

algorithms for machine learning and could serve as indicators of the general health of subjects' voices. In this 

research paper, a novel method is introduced for the automated detection of Parkinson's disease through speech 

signal analysis, a support vector machines classifier (SVM) and an Artificial Neural Network (ANN) are used 

to evaluate and classify the data based on two acoustic features: Bark Frequency Cepstral Coefficients (BFCC) 

and Mel Frequency Cepstral Coefficients (MFCC). These features are extracted from the denoised signals using 

Empirical Mode Decomposition (EMD). The most relevant results obtained for a dataset of 38 participants are 

by the BFCC coefficients with an accuracy up to 92.10%. These results confirm that EMD-BFCC-SVM method 

can contribute to the detection of Parkinson's disease.  
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ANN – Artificial Neural Network; 

BFCC – Bark Frequency Cepstral Coefficients; 

DCT – Discrete Cosine Transform; 

DFT- Discrete Fourier Transform; 

DWT – Discrete Wavelet Transform; 

EMD – Empirical Mode Decomposition; 

FFT – Fast Fourier Transform;  

HHT- Hilbert-Huang Transform; 

IEDCC- Instantaneous Energy Deviation Cepstral 

Coefficient; 

IMF – Intrinsic Mode Functions; 

MFCC – Mel Frequency Cepstral Coefficients; 

PD – Parkinson’s Disease; 

SVM – Support Vector Machines; 

TQWT – Tunable Q factor Wavelet Transform; 

 

1. INTRODUCTION 

 

Following Alzheimer's disease, Parkinson's 

disease (PD) is a neurodegenerative illness that gets 

progressively worse over time. Its prevalence rises 

with age; with 1% of individuals, over 60 being 

touched and up to 4% of individuals over 80 (1). The 

main symptoms of PD are akinesia (slow initiation 
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of movement), rigidity and resting tremor, and 

decreased spontaneous mobility. Unfortunately, 

these symptoms are not only specific to this disease, 

which delays the diagnosis. Furthermore, the early 

manifestation of Parkinson's disease often includes 

noticeable speech impairment as a prominent 

symptom, this allows many researchers to focus on 

voice processing by using different methods of 

advanced signal processing, and extraction of 

acoustic coefficients, including various machine 

learning algorithm to achieve an effective analysis of 

Parkinson's disease. The extraction of features in 

various time-frequency fields has received 

considerable focus. For instance, to differentiate 

individuals with Parkinson's disease (PWP) from 

healthy controls (HC), Mel frequency cepstral 

coefficients (MFCC) were derived from the audio 

signals using Mel domain analysis. This was 

achieved by employing a triangular-shaped stacked 

filter bank that combined cepstrum analysis and 

spectral area splitting. The goal was to derive the 

coefficients of Mel cepstrum as distinctive 
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mailto:boualoulounouha@gmail.com
http://creativecommons.org/licenses/by/4.0/


DIAGNOSTYKA, Vol. 24, No. 4 (2023)  

Boualoulou N, Mounia M, Nsiri B, Behoussine Drissi T: A novel parkinson's disease detection algorithm … 

 

2 

characteristics of the denoised signals, utilizing 

various types of wavelets., with 87% accuracy (2). 

There is also delta delta MFCC features extracted 

from the approximation a3 (3) and IMFCC features 

(4), which are analogous to the MFCC extraction 

technique. Karan et al. proposed the use of IEDCC, 

which is focused on the Hilbert spectrum and aims 

to capture the energy variation in cepstral domain. 

eliminating the need for additional optimization (5). 

Karan et al. employed time-frequency properties to 

effectively represent the discontinuity in speech 

signals. They extracted time-frequency features in 

combination with non-negative matrix 

decomposition (NMF), resulting in a vowel accuracy 

of 92% (6). Zhang et al. proposed utilizing the 

energy direction properties obtained from empirical 

mode decomposition (EDF-EMD). They 

emphasized that the high-frequency component of 

the speech signal contains supplementary 

information regarding Parkinson's disease (PD) (7). 

To capture the variation of derivatives in various 

time-frequency fields, Zhang et al. suggested local 

gradient statistical features relying on Mel transform 

(SFLG-Mel) and the Fourier Transform (SFLG-FT), 

which yielded significantly higher results than the 

traditional features (8). Zayrit et al. proposed a novel 

combination of genetic algorithm and SVM 

classifier using different features MFCC, LPC, 

energy, ZCR and wavelet Shannon entropy (9). 

Based on the analysis of the literature mentioned 

above, incorporating diverse information from the 

time-frequency domain of speech signals, along with 

structural features, has demonstrated impressive 

performance in the classification of Parkinson's 

disease. These approaches effectively capture the 

underlying pathological characteristics associated 

with PD. 

This document aims to suggest a PD automatic 

recognition system using voice analysis. This 

process relies on the coupling of EMD, enabling 

signal projection in an adaptive base, and a new 

algorithm BFCC coefficients, allowing a time-

frequency analysis without being constrained by the 

stationarity and linearity assumptions. These EMD-

BFCC techniques were compared with the old 

MFCC algorithm and applied to a database of 38 

recordings, 20 for Parkinson's patients and 18 for 

healthy patients. This database is used to train and 

test the extracted features using the SVM and ANN 

classifiers. 

The article structure is as follows: The second 

part focuses on the dataset used in our study, the third 

part presents the mathematical tools; the fourth part 

is devoted to the methodology showing the different 

steps and presenting the results obtained. Lastly, the 

article ends with a conclusion and future directions 

that summarizes these results and reveals the future 

goals.  

 
2. DATASET 

 

Database1: The dataset suggested by Sakar was 

gathered by the Department of Neurology at 

Cerrahpasa Medical School, Istanbul University. 

The data collection process involved using a TRUST 

MC-1500 microphone positioned 10 cm away from 

the mouth, with a sampling rate of 44.1 kHz. The 

study comprised 18 healthy individuals (10 men and 

8 women) and 20 patients diagnosed with PD (12 

men and 8 women). The age range of the patients 

was between 43 and 77 years, with a mean age of 

64.86 and a standard deviation of 8.97. The healthy 

individuals ranged in age from 45 to 83 years, with a 

mean age of 62.55 and a standard deviation of 10.79. 

All subjects were invited to state the long-term 

vowel /a/ in Turkish three times during the collection 

of this dataset (10). The voice registration was done 

in stereo and stored in WAV format. The simulation 

of this method will be performed through a PC hp 

windows 10 via the software MATLAB R2022b. 

Database 2: The PC-GITA Spanish dataset 

consists of speech recordings from 50 individuals 

diagnosed with Parkinson's disease and 50 healthy 

individuals. The recordings were captured at a 

sampling frequency of 16 kHz and with a resolution 

of 16 bits. This dataset serves as an independent 

testing resource for evaluating the performance of 

models developed using the PC-GITA dataset. 

 

3. METHODOLOGY 

 

This research aims to employ Empirical Mode 

Decomposition (EMD) for extracting the Bark 

Frequency Cepstral Coefficient (BFCC) feature 

from denoised signals. The primary goal is to 

differentiate between individuals with PD and those 

who are in a healthy state. Figure 1 illustrates the two 

crucial phases of the proposed method for 

diagnosing Parkinson's disease. feature extraction 

and classification. Each stage is described in detail 

below. 
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Fig. 1. The principle of Parkinson's disease categorization. 

 
3.1  Feature extraction method 

The feature extraction process is divided into two 

parts, as described in Figure 1. To obtain each IMF, 

the speech signals were first processed employing 

the EMD technique. BFCC was then calculated from 

each IMF by following the BFCC coefficient 

extraction steps listed below and then compared 

these BFCC coefficients with the Mel Frequency 

Cepstral Coefficients (MFCC). 

 

3.1.1 Mel Frequency Cepstral Coefficients  

MFCC are acoustic parameters first introduced in 

1980 by Davis and Mermelstein for automatic 

speech recognition (11). Each of the stages necessary 

to obtain a characteristic vector of MFCC 

coefficients is described below: 

Pre-emphasis refers to a filter that boosts high 

frequencies; the following formula presents the pre-

emphasis filter's transfer function. 

( ) -1
H z = 1- kz

  (1) 

The pre-emphasis coefficient k has been set to 

0.97. 

Segmentation: Because the speech signal is non-

stationary, it is subdivided into segments of N speech 

samples ranging from 10 to 30 before the parameters 

are extracted. This step produces a quasi-stationary 

signal for each segment. By multiplying each 

segment by a Hamming window, the discontinuity at 

the end of the segments can be reduced. 

Windowing: Since the Hamming window 

displays each frame to reduce the discontinuity at the 

end of the frames, the expression of the Hamming 

window is defined by the next equation: 

( )
2πn

w n = 0,54-0,46×cos
N-1

 
 
    2) 

During the FFT step, each frame undergoes a 

conversion from the time domain to the frequency 

domain. This process involves efficiently computing 

the spectral coefficients by utilizing the DFT. It is 

determined by the equation below: 
knN-1

-j2π
N

n k

k = 0

S = S e
  (3) 

In the Mel filter bank stage, the output of the FFT 

is multiplied by a triangular filter bank that is spaced 

based on the Mel scale, using the following formula: 

10

f
Mel = 2595log 1+

700

 
 
   (4) 

Logarithm and Discrete Cosine Transform 

(DCT): Due to overlapping filters, filter bank 

energies are correlated, so DCT is calculated to 

decorrelate the filter bank energies. The cepstral 

coefficient Ci is obtained directly from the logarithm 

of the filter bank energies mj (M=20 in this study). 

( )
M

i j

j=1

2 πi
C = m cos j-0.5

N N

 
 
 


 (5) 

In the liftering stage, the high-order cepstral 

coefficients are rescaled to ensure that they have 

similar magnitudes. This is done using the following 

formula. In this particular study, a liftering value of 

L = 22 was employed. 

'

n n

L πn
C = 1+ ×sin ×C

2 L

  
  

    (6) 

3.1.2 Bark Frequency Cepstral Coefficient 

(BFCC) 

BFCC is realized by pre-emphasizing and 

windowing the entry signals. As shown in Equation 

3, the fast Fourier transform of the framed and 

windowed input signals is computed and then 

transformed to the bark scale. These vectors are then 
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logarithmized. Finally, the DCT is used followed by 

liftring. The first 12 cepstral coefficients are then 

selected. With the exception of equation (4), which 

is substituted by equation (7), all formulas for 

calculating the BFCC are the same as those for the 

MFCC, from equation (1) to equation (6). Figure 2 

illustrates the steps to be followed to obtain the 

BFCC coefficients. 

26.81f
Bark(f) = +0.53

1960+f
   (7) 

 

3.1.3 Empirical Mode Decomposition (EMD) 

EMD is a data-driven approach that divides 

nonstationary and nonlinear signals into amplitude- 

and frequency-modulated single-signal constituents 

referred to as IMF (12). 

The EMD plays a crucial role in the HHT. It 

splits a signal s(t) into a limited set (M) of oscillatory 

constituents known as Intrinsic Mode Functions 

(IMFs), namely IMF1(t), IMF2(t), ..., IMFM(t). The 

original signal can be expressed as the sum of all its 

IMFs along with a monotonic or constant function 

called the residual r(t). To qualify as an IMF, a signal 

must satisfy two criteria: (i) the number of extrema 

and zero-crossings should be either equal or differ by 

no more than one, and (ii) at any given point within 

an IMF, the average value of the envelope formed by 

the local maxima and the envelope formed by the 

local minima must be zero. The EMD generates 

upper and lower envelopes by connecting the local 

maxima and minima of the signal using cubic 

splines, respectively. The mean envelope is then 

calculated, and the residual is obtained by 

subtracting the mean envelope from the original 

signal. This result should meet the requirements of 

an IMF; if not, the operation is reiterated, but this 

time with the residual calculated as input. Sifting is 

the name given to this repetitive process. Eventually, 

once the latter residue has no more than two 

extremes, the decomposition process is achieved. 

This algorithm is repetitive and has no purely 

mathematical foundation because it was developed 

empirically. The decomposition produces a family of 

IMFs, each one contains oscillations whose 

frequency composition is lower than the one of the 

previous IMF. The lower order IMFs are used to 

depict fast oscillations, whereas the upper order 

IMFs are employed to show the slowly oscillating 

ones. 

Figure 3 illustrates a set of IMF signals generated 

by EMD from the pronunciation of "a" by a PD 

patient. It demonstrates that, because of the EMD 

operation, the high-frequency part of the original 

speech signal is obtained first, and the frequency of 

the following IMFs gradually reduces. This is in 

aligned with the results of references (7,13), which 

proves that according to the frequencies of the IMFs, 

they are grouped in decreasing order. We used the 

first eight IMFs in this experiment 

 

3.2 Classification 

After the feature extraction step, the features 

were inserted into the SVM and ANN classifiers to 

differentiate between sufferers of PD and healthy 

individuals. We examine the BFCC and MFCC 

coefficients extracted from the IMF1 to IMF8 signals 

to assess the efficiency of the SVM classier on 

diverse IMFs and to identify the strongest 

coefficients for discriminating PD from healthy 

individuals. 

 

3.2.1 Support Vector Machines (SVM) 

SVM are popular learning tools in biomedical and 

health informatics applications (14). An SVM 

generates an optimal hyperplane during training that 

can increase the distance of any class from the 

nearest training data points. The main motivations 

for machine learning scientists to apply SVMs to 

their studies are as follows: (1) First, SVMs are very 

effective in generalizing new data, (2) The second 

reason is that SVMs rely on a small number of 

hyperparameters. Let's examine a set of data Ts with 

S instances, T= {(xi, xj) |xi ε RD, xj ε {-1,1}} Si=1 

where xi represents an instance for ith, D is the size 

of the Parkinson's disease data's original feature 

space, and xj represents the category labels, i.e., 

Parkinson's disease, either present or absent. For the 

Parkinson's disease dataset examined in this paper, 

the value of D is 38. The SVM modeling generates a 

hyperplane by f(x)= θT *x + δ, where δ represents 

the bias and θ the weight vector. Depending on the

 

 

Fig. 2. Steps of calculation of the BFCC coefficients 
 

 

Speech signal

Pre-emphasis

Segmentation Windowing

FFT/Bark filter 
Bank

Logarithm/DCT Liftering

BFCC 
coefficients
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Fig. 3. IMFs obtained by EMD for a PD patient (a: IMF1, b: IMF2, c: IMF3, d: IMF4, e: IMF5, f: IMF6, g: IMF7, h: IMF8). 

 

trained data, The SVM's hyperplane f(x) increases 

the margin while decreasing (lowering) the 

classification error. The margin is calculated by 

adding the distances between the nearest negative 

and positive instances. In other words, the 

hyperplane increases the distance of the margin 

2/||θ||. The variables of the SVM are determined by 

the type of kernel employed. In this paper, a linear 

kernel function was applied. 

 

3.2.2 Artificial Neural Network (ANN) 

An ANN classifier, drawing inspiration from the 

human brain, is a machine-learning model designed 

explicitly for classification tasks. Its structure 

comprises multiple interconnected neuron layers, 

passing input signals through synaptic weights to 

generate an output. 

In the context of an ANN classifier, input data is 

presented as vectors, and the neurons in the initial 

layer process distinct data features. As the input 

values propagate through subsequent layers, 

activation functions are utilized to compute the 

outputs of the neurons. Ultimately, the last layer of 

the network generates an output that corresponds to 

the predicted class for the given input data. 

 

3.2.3 Evaluation 

Three performance indicators have been used in 

this work, to determine the performance of 

classifiers on datasets: sensitivity, accuracy and 

specificity (10). Accuracy is defined as the 

percentage of valid diagnostic results. Their 

definitions are as follows: 

TN+TP
Accuracy =

TN+TP+FP+FN
  (8) 

TP
Sensitivity =

TP+FN
   (9) 

TN
Specificity =

TN+FP
   (10) 

With: 

Normal subjects who have been accurately 

categorized are True Positives (TP). 

Parkinson's disease sufferers who were 

accurately categorized are True Negatives (TN). 

Parkinson's disease sufferers who were 

misclassified are False Positives (FP). 

Normal subjects who were misclassified are 

False Negatives (FN). 

 

4. RESULTS AND DISCUSSION 

 

4.1 Experiment results of BFCC on dataset 

Sakar 

The extraction of voice signal parameters will be 

performed by the EMD. 8 IMFs are obtained; then 

the calculation of BFCC and MFCC coefficients 

from each IMF. Ultimately, the classification phase 

involves applying the ANN and SVM classifiers 

. This process commences by training the vectors 

extracted from the data utilized for learning. It 

concludes with a testing phase in which new data is 

classified based on the trained model. This PD 

detection model will be applied to 38 different 

recordings, included 18 normal subjects and 20 

sufferers of PD (11). The simulation of this model is 

carried out using Matlab software R2022b, which 

allowed us to save a lot of time at the level of 

programming thanks to the functions, which are 

incorporated there. The speech signal is split into a 
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sum of single component signals, resulting in IMFs, 

in the first step of the EMD method. eight IMFs have 

been confirmed on these two requirements: 

1) The number of extrema minus the number of 

zero crossings must be less than or equal to one. 

2) At any point, the average of the envelopes 

defined by the local maxima and minima is equal to 

zero. 

In the second step, each IMF will be considered 

as an BFCC and MFCC block input, from which 12-

cepstral coefficients have been recovered for each 

person. For the speech to be recognized correctly, 

therefore, it is necessary to model these coefficients 

by calculating the average value. Finally, a 

classification phase employing the SVM and ANN  

classifiers allowed to identify healthy patients from 

sick patients. The validation technique includes 

holdout cross-validation to test the generalizability 

of the system. The holdout is on testing a classifier 

with 20% of the participant's speech samples in the 

dataset, while the remaining (80%) of the speech 

samples are utilized for training, with 20% as test 

data and 80% as training data being randomly 

selected.  

This experiment is based on a comparative study 

to select the effeteness coefficients between the 

BFCC and MFCC. Table 1 displays the sensitivity, 

accuracy, and specificity of the classification 

obtained using holdout cross-validation on the Sakar 

dataset, considering the extraction of 12 BFCC and 

12 MFCC coefficients. It is observed that the 

characteristics derived from the BFCC have the 

greatest accuracy of 92.10 compared to the MFCC. 

Table 1 presents the calculated percentages for 

accuracy, sensitivity, and specificity across all 

records. Table 2 presents the performance 

comparison of BFCC and MFCC using ANN. The 

results indicate that BFCC achieves the highest 

accuracy of up to 85.71%. These findings 

demonstrate the effectiveness of the proposed 

method in Parkinson's disease diagnosis. 

 

4.2 Discussion 

The objective of Table 3 is to provide an 

overview of the effectiveness of the different PD 

detection methods. In Table 3, The same data is used 

in this paper for the literature (2,15,16), we 

performed experiments on our dataset and strengthen 

the comparisons using the methods described in (17–

19). 

In references (2) and (15), the focus is on DWT 

for the diagnosis of Parkinson's disease. The method 

of literature (2) first applied DWT, especially 

wavelet Debauchie 2 scale 3 followed by the 

extraction of MFCC, then the classification step by 

using an SVM classifier, whereas those of Zayrit et 

al. Still based on the same wavelet type, they use the 

SVM classifier (RBF function) to extract the MFCC 

coefficients (15). Compared the latter with the 

results of the article (2), the accuracy has decreased. 

(Results in ref. (2) are higher than those in ref. (15)). 

Both methods give lower precision results than our 

work since the EMD decomposition gives an 

adaptive decomposition of the analyzed signal, EMD 

is a tool that does not require a priori fixed basis 

functions as in this case wavelet transform. 

.

 

         Table 1. Sensitivity, Accuracy and Specificity for the 8 IMFs using SVM 

 

IMFs 

SVM 

MFCC BFCC 

Accuracy 

(%) 

Sensitivity  

(%) 

Specificity  

(%) 

Accuracy 

(%) 

Sensitivity  

(%) 

Specificity  

(%) 

IMF1 73.33 85 61.11 71.05 100 38 

IMF2 83.33 75 50 73.68 100 44.44 

IMF3 83.33 90 66.66 73.68 85 61.11 

IMF4 86.67 60 72.22 73.68 70 77.77 

IMF5 86.67 100 72.22 92.10 95 88.88 

IMF6 90 85 72.22 81.57 80 83.33 

IMF7 71.05 70 50 68.42 65 72.22 

IMF8 76.67 90 61.11 68.42 66.66 70 

 

           Table 2. Sensitivity, Accuracy and Specificity for the 8 IMFs using ANN 

 

IMFs 

ANN 

MFCC BFCC 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

IMF1 28,57 33,33 25 42,85 33,33 50 

IMF2 42,85 33,33 50 28,57 33,33 25 

IMF3 71,42 100 50 42,85 33,33 50 

IMF4 71,42 66,66 75 71,42 66,66 75 

IMF5 71,42 66,66 75 85,71 100 75 

IMF6 57,14 66,66 50 71,42 66,66 75 

IMF7 57,14 66,66 50 57,14 66,66 50 

IMF8 71,42 100 50 71,42 100 50 
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                        Table 3. A contrast of the suggested strategy with earlier approaches 

Authors (methods 

source) 

Features Dataset  Accuracy (%) 

Belhoussine et al. 

(2) 

DWT-MFCC Dataset 

Sakar 

86,84 

Zayrit et al. (15) DWT- MFCC Dataset 

Sakar 

81 

Benba et al. (16) MFCC-SVM Dataset 

Sakar 

73,53 (polynomial 

kernel) 

Fang et al. (17) MFCC, Delta MFCC, Delta Delta MFCC 

 

Dataset 

Sakar 

89,29 

Solanalavalle et 

al. (18) 

MFCC, Baseline features, TQWT features, 

WT features 

Dataset 

Sakar 

89,66 

Sakar et al. (19) MFCC, Baseline features, TQWT features 

WT features  

Dataset 

Sakar 

81,45 

Our method EMD-BFCC-SVM Dataset 

Sakar 

92.10 

 

 

Similarly, the results in Ref. (16) show that the 

accuracy rate of the Sakar dataset is 73.53%, which 

is focused on the extraction of MFCC coefficients, 

and afterward, the classification using a polynomial 

kernel SVM classifier. On the other hand, when 

experimenting with a deep neural network (DNN) 

classifier centered on MFCC, delta MFCC and delta 

delta MFCC features reported in Ref. (17), using the 

Sakar dataset achieved 89.29% accuracy. This 

accuracy is lower than that obtained using the EMD-

BFCC feature. It is thought that the employment of 

DNN classifiers poses the problem of expanding the 

learning parameters, leading to the danger of 

adapting or falling into a local optimum. 

Moreover, the detection of PD relies on MFCC, 

the baseline features, along with the TQWT and 

Wavelet Transform (WT) features mentioned in 

references (18,19). The approach described in 

reference (18) employed feature selection techniques 

prior to classification, resulting in an improved 

accuracy rate. These findings are consistent with the 

original research, where the results reported in 

reference (18) outperformed those in reference (19). 

Since the EMD-BFCC function is a centralized 

method for extracting information from speech 

signals, both methods are less accurate than our 

paper, this is justified by the effectiveness of the 

EMD method which is characterized by non-

linearity, multi-resolution, locality, and self-adaptive 

as well as for the BFCC coefficients, which have 

been simulated according to human hearing's 

auditory model. However, since the basic features 

extract only the basic information from the speech 

signal, the extracted information may be incomplete. 

Consequently, the characteristics obtained from 

TQWT and MFCC miss significant information 

about the high frequencies of the signal, resulting in 

a lower result than our proposed EMD-BFCC 

feature. This aligns with the conclusion put forth in 

this paper, which states that significant information 

about individuals with Parkinson's disease can be 

extracted from the high-frequency components 

obtained through the decomposition of speech 

signals. Based on the previous analysis and Table 1, 

we can see that the accuracy of BFCC is the highest 

compared to the MFCC algorithm. For these reasons, 

BFCC is the most appropriate algorithm for 

diagnosing patients with PD. 

Extensive studies have been conducted to 

explore the link between Parkinson's disease and 

voice signals. Citation (20) assessed acoustic and 

perceptual properties and found that mildly affected 

patients already had speech and language 

abnormalities, with a marked deterioration in speech 

quality and articulation speed. Reference (21) 

compared the informational content and 

informational efficacy of oral language spoken by 

patients with Parkinson's disease to a sound 

reference group and conclude that the group with 

Parkinson's disease was different from the reference 

group concerning both conceptual and vocabulary 

content and efficacy measures. Reference (22) 

created a speech-based therapy tool for PD patients. 

These studies show that speech- and language-based 

Parkinson's disease diagnosis is meaningful and 

potentially useful, and they lay the groundwork for 

PD detection. In the process of extracting 

characteristics, the voice signal was partitioned into 

IMFs utilizing EMD method. In order to capture the 

time-frequency properties of signals at different 

scales, these IMFs are grouped in descending order 

of frequency constituents. New characteristics are 

then obtained from IMFs and ranked. According to 

Table 1, the BFCCs obtained from the low-order 

IMFs are more successful in predicting diseased 

individuals (PD patients) than normal individuals. 

Furthermore, the high-frequency signals extracted 

from speech signals encompass more pertinent 

information about individuals with Parkinson's 

disease (PD). This observation is in line with the 

findings reported in reference (23), which 

emphasizes that characteristics derived from the 

spectrogram of high-frequency signals contain 

crucial information. Similarly, reference (19) 

highlights the substantial variations in the amount of 
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information present in high-frequency speech 

samples from individuals with PD. Simultaneously, 

previous literature (24) has demonstrated that the 

physiological details of the voice, obtained from the 

high-frequency segment of the signal, can mirror the 

physiological changes occurring in the speech 

organs. 

In our study, holdout cross-validation was 

employed, dividing the data into 80% for training 

purposes and 20% for testing. This approach 

effectively mitigates the risks of overfitting and 

underfitting, as well as preventing inflated predictive 

accuracy resulting from intricate link between 

complex predictors of diagnostic and identification 

status. The classification outcomes indicate that the 

proposed characteristic selection process in this 

article is robust and capable of accurate 

classification. 

From all these explanations, we can notice that 

for a better diagnosis of PD patients, this EMD-

BFCC and SVM method with the holdout cross 

validation using the speech signal gives a better 

result than MFCC and other techniques. 

Table 4 illustrates that even the most promising 

EMD-based BFCC method was unsuccessful in 

accurately predicting between Parkinson's and 

normal subjects. The decline in performance could 

potentially be attributed to variations in recording 

conditions or differences in language patterns 

present within the two datasets. 

 
Table 4. Performance Evaluation of Support Vector 

Machine for Classifying Parkinson's Disease and Healthy 

Subjects in Two Independent Databases. 

Train 

database 

Test 

database 

Features ACC 

(%) 

 

Database 1 

 

Database 2 

 

BFCC 

 

56 

 

Database 2 

 

Database 1 

 

BFCC 

 

52,63 

 

5. CONCLUSION AND FUTURE 

DIRECTIONS 

 

In the present study, we propound a novel 

methodology founded on combination of EMD-

BFCC as a feature extraction step. We test its 

performance on a database of 38 records, 18 of 

which are sound patients and 20 of which are PD 

ones. The voice signal transformation is processed 

by the EMD method from which we obtained 8 

IMFs; Each IMF will be infused into the BFCC 

block to retrieve 12 coefficients, which will then be 

applied to the SVM classifier with an 80% training 

base. Finally, we perform a test with 20% of the 

records. We achieve an accuracy of 92.10%. The 

experiments show that the composed EMD-BFCC 

can effectively diagnose PD patients. The goal of 

future work is to prove the effectiveness of this 

proposed model by applying it to a large dataset and 

other types of sounds as well as to the classification 

of different neurodegenerative diseases based on the 

speech signal. 
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